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The water–biopolymer cross-relaxation model, proposed by cies; accordingly, the theory in its original form cannot ex-
H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson. plain the low-frequency dependence of T1. In this paper,
70, 79 (1986)], explains the Larmor frequency dependence of T1 we have extended the RH model to explain spin–lattice
in many biological systems. However, the RH theory fails at low relaxation, including that in the rotating frame, at all Larmor
Larmor frequencies. In this paper, a more general version of frequencies.
the RH theory has been developed. This theory is valid at all
frequencies. Use of the new expression for the spin– lattice re- BASIC RH MODEL
laxation rate (1/T1), earlier published experimental data in H2O/
D2O bovine serum albumin, which had been measured over a In the RH model, the T1 of a heterogeneous biological
wide frequency range (10 kHz to 100 MHz), were fitted over the system can be considered to arise from two sources: bulk
entire frequency range. The agreement between theory and the water protons (solvent phase) and macromolecular protons
experimental data is excellent. Theoretical expressions for the

(protein phase). Cross relaxation can cause longitudinal mag-rotating-frame spin– lattice relaxation rate (1/T1r) were also ob-
netization to be transferred between the two phases. The ztained. q 1996 Academic Press, Inc.
component of the proton’s magnetization is designated as S
or P for the solvent or protein systems, respectively. The
relaxation rates of the solvent and the protein protons in the

INTRODUCTION
absence of cross relaxation are R1S and R1P, respectively, and
the cross-relaxation rates RT and R*T represent, respectively,

The frequency dependence of T1 provides important in-
the transfer rate of the magnetization from the solvent to the

sight into the relaxation mechanisms in biological tissues. It
protein protons and that from the protein protons to the

has been shown that cross relaxation between bulk protons
solvent protons. These relaxation processes are illustrated in

and macromolecular protons plays an important role in the
Fig. 1.

proton spin–lattice relaxation behavior of many biological
The time dependence of the z magnetization in the solvent

systems (1, 2). The Larmor frequency (n) dependence of the
and the protein phases for the two-phase biological system

spin–lattice relaxation time is observed in various biological
described in Fig. 1 is given by

systems (3, 4) to have a dependence on n which is given by
1/T1 Å B / A/

√
n, where A and B are constants. The water– dS

dt
Å 0R1S(S 0 S0) 0 RTS / R*TP [1a]biopolymer cross-relaxation model proposed by Rorschach

and Hazlewood (RH) (1) provides a satisfactory explanation
andfor this frequency dependence. In this model, the biological

system is assumed to consist of two phases: (1) a bulk water
phase and (2) a macromolecular phase. The vibrational mo-

dP

dt
Å 0R1P(P 0 P0) / RTS 0 R*TP, [1b]

tion of the macromolecule relaxes the bulk water protons
via either cross relaxation or exchange with the water mole- where S0 and P0 represent equilibrium values for S and P.
cules in the hydration shell. The RH model has been success- In equilibrium, dS/dt Å dP/dt Å 0, and Eqs. [1a] and [1b]
fully applied to explain the frequency dependence of T1 (3) then give RTS0 Å R*TP0.at high Larmor frequencies (30–270 MHz). However, the Equations [1a] and [1b] can be rewritten as
assumptions of the RH theory are not valid at low frequen-

d(dS)
dt

Å 0R1SdS 0 RT dS / RT dP [2a]
† To whom correspondence should be addressed.
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133MODEL FOR RELAXATION IN BIOLOGICAL SYSTEMS

only terms linear in R1P and R1S, Eq. [5] in the fast-exchange
limit reduces to

S 1
T1
D(1)

Å R(1)
1 Å S M

1 / MD R1S / S 1
1 / MD R1P. [6]

The superscript (1) indicates that the square-root term of Eq.
FIG. 1. The schematic representation of the spin–lattice relaxation [5] is expanded to first order in (R1P 0 R1S)/MRT.

paths of the solvent (S) protons and the protein (P) protons in a two-phase The observed relaxation rate (Eq. [6]) depends on the
biological system. The symbols are explained in the text. relaxation rates of the solvent protons and the protein protons

and also on the ratio of the number of solvent to the number
of protein protons. The solvent protons are characterized by
a short correlation time (vts ! 1) (1); hence, it is indepen-

and dent of the Larmor frequency. Therefore, the frequency de-
pendence of T1 originates only from the protein protons.d(dP)

dt
Å 0R1PdP 0 RT

S0

P0

dP / RT
S0

P0

dS, [2b] The simplest model of a protein is a chain of backbone
bonds connected by completely flexible joints. The vibra-
tional motions of these chains are represented as normalwhere dS Å (S 0 S0)/S0 and dP Å (P 0 P0)/P0. modes. According to Rouse’s theory (5), the correlationThe approximate solution to the coupled Eqs. [2a] and
times of these normal modes (q) are given by tc Å aq02,[2b] for the solvent protons is given by
where a is a material-dependent constant. The relaxation
rate due to the vibrational motions of the polymer chain is

dS à D exp(0t/T1), [3] then given by

where D is a constant. The solvent proton relaxation rate is
then R1P Å C *

tc max

tc min

t03/2
c tcdtc

1 / v2t2
c

Å Cn01/2 *
Xmax

Xmin

X01/2dX

1 / X2 , [7]

1
T1

Å 1
2
[R1P / R1S / RT(M / 1)] where C is a constant and X Å vtc.

Typical vibrational frequencies of a polymer chain are of
order 1013 Hz, which is much larger than NMR Larmor0 1

2

√
[R1P 0 R1S / RT(M 0 1)]2 / 4MR2

T , [4]
frequencies (Ç108 Hz); hence, it is reasonable to replace the
lower limit by zero (since vtcmin Ç 1005). At high Larmor
frequencies, the upper limits of the integral could be replacedwhere M Å S0/P0, the ratio of the number of solvent protons
by infinity, in which case the value of the integral does notto protein protons, which is assumed to be much greater
depend on the Larmor frequency v and is equal to p/

√
2. So,than one (i.e., M @ 1).

the protein relaxation rate is given byThe relaxation rate in Eq. [4] could also be written as

R1P Å A n01/2, [8]1
T1

Å 1
2

[R1P / R1S / RT(M / 1)] 0 1
2

RT(M / 1)

where A is a constant.
Therefore, the spin–lattice relaxation rate, originally ob-1

√
1 / 2

(R1P 0 R1S)(M 0 1)
RT(M / 1)2 / (R1P 0 R1S)

2

R2
T(M / 1)2

. [5]
tained by Rorschach and Hazlewood by substituting Eq. [8]
into Eq. [6], is valid for high Larmor frequencies and given
byIn the ‘‘fast-exchange limit,’’ we assume that (R1P 0 R1S)/

MRT ! 1, which is equivalent to assuming that the exchange
rate RT is much faster than the relaxation rates, R1P and R1S, S 1

T1
D(1)

Å B / A n01/2, [9]for the individual phases. This assumption should be valid
at high Larmor frequencies, but cannot be valid at suffi-
ciently low frequencies, since R1P increases as the Larmor
frequency is lowered (see Eq. [8] below). The third term in where B Å [M/ (M / 1)]/R1S and A Å Cp/[(M / 1)

√
2]. The

frequency dependence of T1 described in Eq. [9] has beenthe square root of Eq. [5] can then be neglected and the
square root can be expanded only to first order. Keeping observed in various biological systems (3, 4).
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134 HACKMANN ET AL.

HIGH LARMOR FREQUENCY LIMITATION OF
THE RH MODEL

There are several features of the RH model which must
be circumvented in developing a more general model which
is applicable to all Larmor frequencies.

(1) At low Larmor frequencies, the third term in the
square root of Eq. [5] cannot be neglected.

(2) At low Larmor frequencies, the expansion of Eq. [5]
in powers of (R1P 0 R1S)/MRT to first order may not be
sufficient because R1P increases at low Larmor frequencies.
Hence, one should go to higher order in the expansion pa-
rameter (R1P 0 R1S)/MRT.

(3) At low Larmor frequencies, the upper limit of the
integral in Eq. [7] cannot be replaced by infinity. When the
upper limit has a finite value, the value of the integral be-
comes frequency dependent and should be evaluated more
generally.

FIG. 2. The spectral density J1P(n) as a function of the Larmor fre-
quency n.EXTENSION TO LOW FREQUENCIES

Spin–Lattice Relaxation (1/T1)

(1) When the third term in the square root of Eq. [5] is
F(n, tmax) Å

n00.5

p Fln SXm /
√
2Xm / 1√

1 / X2
m

Dincluded and the square root expanded to second order in
the expansion parameter, the relaxation rate is given by

/ arctanSXm 0 1√
2Xm

D / p2G . [13]S 1
T1
D(2)

Å S 1
T1
D(1)

0 (R1P 0 R1S)
2

RT

M

(M / 1)3 , [10]

In the limit of high Larmor frequencies, Xm r ` and F(n,where the superscripts (1) and (2) refer to the order of approxi-
tmax) Å n00.5. Then, Eq. [12] reduces to Eq. [6], since themation.
third term in Eq. [12] becomes negligible. Equation [12] can(2) The integral in Eq. [7] can be evaluated explicitly at
explain the frequency dependence of T1 over a wide fre-low frequencies using the expression (6)
quency range. Figure 2 shows a calculation using Eq. [7] of
the spectral density J1P(n) (proportional to R1P) for two cases:
(1) the upper limit is infinite and (2) the upper limit is finite.*

vtc max

0

X01/2 dX

1 / X2 Å
1√
2
Fln SXm /

√
2Xm / 1√

1 / X2
m

D
Note that the spectral densities of both curves are almost
the same at high frequencies but are quite different at low
frequencies./ arctan SXm 0 1√

2Xm
D / p2G , [11]

Rotating-Frame Relaxation (1/T1r)

where Xm Å vtc max. The low-frequency relaxation can also be conveniently
A more general expression for the spin–lattice relaxation determined by measuring the spin– lattice relaxation time

rate which is now valid at all Larmor frequencies is obtained (T1r) in the rotating frame. In this measurement, the
by combining Eqs. [6], [7], [10], and [11], and is given by Larmor frequency n (ÅgB0/2p, where g is the gyromag-

netic ratio) is replaced by n1 (ÅgB1/2p, where B1 is the
RF magnetic field). Furthermore, the constant C in Eq.S 1

T1
D(2)

Å B / AF(n, tmax) 0
[ArF(n, tmax)]

2

RT

, [12] [7] contains the mean-square local field. In the rotating
frame, this constant is only one-third its value in the labo-
ratory frame (7). Hence, the spin– lattice relaxation in the
rotating frame is given bywhere
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135MODEL FOR RELAXATION IN BIOLOGICAL SYSTEMS

(t c max, RT, B, and A) and resulted in excellent agreement
between theory and the experiment.

CONCLUSION

We have extended the Rorschach–Hazlewood theory for
spin–lattice relaxation in biological systems to low frequen-
cies and have derived expressions for the spin–lattice relax-
ation rate in the laboratory frame and in the rotating frame.
Our expression for 1/T1 is valid over a wide frequency range.
Excellent agreement was obtained between our theory and
published experimental data on serum albumin solution,
thereby confirming the validity of our model in this system
at all frequencies investigated. This theory has also been
successfully applied to rat lung (9).
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FIG. 3. The spin–lattice relaxation rate (1/T1) as a function of the

Larmor frequency n for a mixed H2O/D2O serum albumin solution [from REFERENCES
Ref. (8)]. The solid line is the theoretical calculation using our model (Eq.
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